RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2017 FIRST YEAR [BATCH 2016-19]

STATISTICS (General) Paper : II

Date : 24/05/2017 Time : 11 am – 1 pm

[Use a separate Answer Book for <u>each group</u>]

<u>Group – A</u>

- 1. Answer **any three** questions:
 - a) Define correlation ratio. Show that the numerical value of correlation ratio is greater than the numerical value of correlation coefficient.
 - b) Define correlation index. Interprete the situation $o \le r^2 < r_3^2 = e_{yx}^2 = 1$

where r, r_3 and e_{yx} are respectively correlation coefficient, correlation index of order 3 and correlation ratio.

- c) Show that $(1-r_{1,23}^2) = (1-r_{12}^2)(1-r_{13,2}^2)$ where $r_{13,2}$ is partial correlation coefficient between x_1 and x_3 given x_2 . Hence or otherwise prove that the value of multiple correlation coefficient cannot be less than the value of any total correlation coefficient or the value of any partial correlation coefficient.
- d) Explain your understanding about association between two attributes. Hence establish any one measure of association of attributes.
- 2. Establish the multiple regression equation of x_1 on x_2 and x_3 . Hence define partial regression coefficients.

OR

Write short notes on **any two** of the following topics:

- a) Partial correlation
- b) Intraclass correlation
- c) Goodman-Kruskal measure of association.

<u>Group – B</u>

Answer any two questions from Question Nos. 3 to 6:

- 3. Zero covariance between two random variables does not necessarily mean they are independent. Justify the statement with an example.
- 4. A random variable X follows binomial distribution with parameters *n* and *p*. Show that $P(X = even) = \frac{1}{2} \left[1 + (1 2p)^n \right].$
- 5. Determine f(x), the probability mass function from $f(x) = \frac{\lambda}{x} f(x-1)$, $x = 1, 2, \cdots$ where f(x) is non-zero for non-negative integral values of the random variable X.
- 6. Show that for the exponential distribution defined by the pdf $\begin{cases} f(x) = \theta e^{-\theta x}, x \ge 0 \\ = 0 \\ \theta > 0 \end{cases}$, elsewhere $\begin{cases} \theta > 0 \\ \theta > 0 \end{cases}$

[3X5]

Full Marks : 50

[2X5]

10

5 + 5

Answer **any one** question from **Question Nos. 5 & 6**:

		Y = +1 when X is odd	
		=-1 when X is even	
		From the joint distribution of X & Y, find variance of $Z = XY$. Are X & Y independent?	5+3
	b)	X & Y jointly follow bivariate Normal distribution with parameters 0, 0, 1, 1, ρ . Show that	
		when $\rho = 0$, X & Y are independent.	4
	c)	State weak law of large numbers (WLLN) & De-Moivere Laplace limit theorem.	3
6.	a)	Suppose $\log X \sim N(\mu, \sigma^2)$. Find the distribution of <i>X</i> .	3
	b)	If a Normal distribution is symmetrical about 5 with standard deviation 2, what are the points of inflection of the distribution?	2
	c)	If <i>X</i> & <i>Y</i> are two independent Normal variables with mean 5 & 7 and s.ds 3 & 4 respectively, find the mean & s.d of $(3X - 2Y)$.	2
	d)	An unbiased coin is tossed 200 times. Find the probability that the number of heads appearing is between 110 and 120 (inclusive both values).	8
		$(\Phi(1, 34) = 0.9098773 \text{ and}$	

5. a) Let X denote the number obtained from the throw of a die. Let Y be another variable such that

Given $\begin{cases} \Phi(1.34) = 0.9098773 \text{ and} \\ \Phi(2.89) = 0.998073 \end{cases}$.

_____ × _____